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Abstract—Deep generative models are powerful but difficult
to train due to its instability, saturation problem and high
dimensional data distribution. This paper introduces a game
theory framework with Wasserstein metric to train generative
models, in which the unknown data distribution is learned by
dynamically optimizing the worst-case payoff. In the game, two
types of players work on opposite objectives to solve a minimax
problem. The defenders explore the Wasserstein neighborhood
of real data to generate a set of hard samples which have the
maximum distance from the model distribution. The attackers
update the model to fit for the hard set so as to minimize
the discrepancy between model and data distributions. Instead
of Kullback-Leibler divergence, we use Wasserstein distance to
measure the similarity between distributions. The Wasserstein
metric is a true distance with better topology in the parameter
space, which improves the stability of training. We provide
practical algorithms to train deep generative models, in which an
encoder network is designed to learn the feature vector of the high
dimensional data. The algorithm is tested on CelebA human face
dataset and compared with the state-of-the-art generative models.
Performance evaluation shows the training process is stable and
converges fast. Our model can produce visual pleasing images
which are closer to the real distribution in terms of Wasserstein
distance.

I. INTRODUCTION

Deep neural networks have achieved great success in su-
pervised learning. Apart from recognition and classification,
people may wish to learn directly from the nature without
prior knowledge, i.e., learn the distribution of a set of un-
labelled data. In generative learning, new samples produced
by the learned model should be indistinguishable from the
original data and have enough diversity. Generative models are
powerful tools for many tasks such as signal denoising, image
inpainting, data synthesis and semi-supervised learning.

However, learning deep generative model is hard and time
consuming. The high dimensional training data and extremely
complex objective structures lead to many problems in opti-
mization, such as algorithm instability, saturation, and mode
collapse. Moreover, the model should have strong generaliza-
tion power to produce diversiform new examples instead of
just memorizing the training set.

An early work of generative learning dates back to the
80s, when restricted Boltzmann machines (RBMs) [1] were
proposed to learn probability distributions based on binary
input vectors. Just as multi-layer perceptrons are universal
function approximators, deep Boltzmann machines are undi-
rected graphical models that can approximate any probability
function over discrete variables [2]. To deal with time series
data, Conditional Restricted Boltzmann Machines (CRBMs)
[3] were proposed, where previous time instances are treated as

additional inputs to model short-time temporal dependencies.
Later in 2006, Hinton [4] introduced the famous deep belief
networks (DBNs). They are hybrid graphic models with both
directed and undirected links between latent variables. RBMs
and DBNs have historic significance in deep learning, though
they are rarely used in the recent years.

Variational Auto-Encoders (VAEs) [5] and Generative Ad-
versarial Networks (GANs) [6] are the most popular deep
generative models today. VAE involves an inference network
to explicitly formulate the posterior distributions of laten
variables, and maximizes a lower bound on the likelihood.
It offers a nice theory, but practically, VAE samples suffer
from blurry due to the noise term in their model density
functions [7]. GAN alternatively trains a generative network
and a discriminative network with opposite objectives. The
loss functions are defined based on information metric such as
Kullback-Leibler and Jensen-Shannon divergence. Despite its
great success in producing visual pleasing samples, the training
process is unstable and has the risk of ’mode collapse’. It
needs to carefully keep the balance between updating those
two networks to avoid gradient saturation [8]. To deal with
this problem, Martin Arjovsky switches to the Earth Mover
(EM) distance and proposed WGAN [9]. Their model involves
another neural network to estimate EM, whose weights are
clipped to enforce the Lipschitz constraint.

Different from VAE and GAN models, Generative Moment
Matching Networks (GMMN) [10] do not need a second
network. The generative model is trained by minimizing the
maximum mean discrepancy (MMD), where the objective is
evaluated by matching all moments of the statistics between
real and fake sample distributions. By using kernel tricks,
explicit computation of those moments are not required. Re-
cently, Aude Genevay [11] proposed a method to learn with
Sinkhorn divergence, which is a mixture of MMD and the
optimal transport loss [12]. The references mentioned above do
not examine Wasserstein-based distributionally robust games.

This paper introduces a new game-theoretic framework for
generative learning. We formulate the problem as a distri-
butionally robust game (DRG) under uncertainty and offer
a corresponding distributionally robust equilibrium concept.
In this game there are two groups of players with opposite
objectives. Each player works on a continuous action space
to optimize the distributionally worst-case payoff. Our model
differs from the distribution-free robust game framework pro-
posed by [13], [14]. In their approach, the uncertainty set needs
to be pre-specified by the decision makers in advance, while
in our approach any alternative distribution within a certain



Wasserstein distance from a tractable observed distribution can
be tested.

Another issue is how to define the distance between two
distributions, i.e., the similarity between real and fake sample
sets. Instead of information based metric such as Kullback-
Leibler (KL) divergence, we use Wasserstein metric to mea-
sure the distance between two distributions. It is a real distance
and has finer topology in the parameter space, which pro-
vides better gradients and therefore improves the stability of
the optimization algorithm. However, computing Wasserstein
distance involves solving an optimal transportation problem,
which is nontrivial. Marco Cuturi [15] adds an entropic
regularization term to the original problem and switch to
calculating the Sinkhorn distance. Martin Arjovsky [9] works
on the Kantorovich-Rubinstein dual problem, and trains a
neural network to estimate the cost. In our framework, this
task is given to the defenders, who explore the Wasserstein
ball of real data to generate adversarial samples for attackers.
Using Moreau-Yosida regularization [16], [17], we transform
the Wasserstein-based optimization into an Euclidean distance
based optimization, which is much simpler.

To train deep generative models for image data, we imple-
ment the attackers and defenders with convolutional neural
networks. Since the data has very high dimension, we add
an encoder network to learn meaningful feature vectors and
embed them into the model.

The main contributions of our work as listed below:

• We proposed a new game theory framework to learn
generative models. To the best of our knowledge, this
is the first work connecting distributionally robust game
with deep generative learning.

• We analyzed the properties of Wasserstein distance from
both theoretical and empirical perspectives and offer a toy
example to illustrate its advantage over KL-divergence.

• We provide practical implementation of our framework
to train a deep generative model. The algorithm has
been tested on CelebA human face dataset. Both qualita-
tive and quantitative evaluation results are reported. Our
model can produce high quality images which are closer
to the real data distribution than existing methods.

The rest of the paper is organized as follows. Section II
introduces the game theory framework and define the distri-
butionally robust Nash equilibrium. Generative model learning
is formulated as a game in which two groups of players
iteratively optimizing their worst-case objective. Section III
discuses the properties of Wasserstein metric and illustrates
its advantage over traditional information-based loss functions.
Section IV provides detailed learning procedure of our ap-
proach. Practical implementations for training deep genera-
tive models is summarized in Algorithm 1. Experiments and
performance evaluation are presented in Section V. Finally,
conclusions are drawn in Section VI.

II. DISTRIBUTIONALLY ROBUST GAMES

A. From unsupervised learning to Generative Model

Deep learning has earned great success in supervised learn-
ing. However, well-labelled data is expensive. People wish
to learn directly from unlabelled data. Suppose the real data
samples are drawn from an unknown distribution m, and we
want to train a model to generate similar fake samples. Let
m̃ be the fake sample distribution, then the objective is to
minimize the discrepancy between real and fake distributions
D(m, m̃). In this paper we use Wasserstein metric to measure
the discrepancy and formulate the training problem as a
distributionally robust game.

B. Game Theoretic Framework for Learning

Distributionally robust game (DRG) is a game with incom-
plete information. Instead of assuming an underlying mean-
field or exactly known probability distribution, one acts with
an uncertainty set, which could be distributions chosen by
other players. The set of distributions should be chosen to fit
for the applications at hand. In robust best-response problems,
the uncertain sets are represented by deterministic models.
The opponent players have a bounded capability to change
the uncertain parameters, and therefore affects the objective
function that the decision maker seeks to optimize. Each player
has his own robust best response optimization problem to
solve. Thus, the standard best response problem of player
j: infaj∈Aj lj(aj , a−j , ω) becomes the minimax robust best
response:

inf
aj∈Aj

sup
ω∈Ω

lj(aj , a−j , ω) (1)

where l is the objective functional evaluated at uncertain state
ω. This kind of approach on uncertainty has a long history in
optimization, control and games [18], [19], [20]. A credible
alternative to this set-based uncertainty is to use a stochastic
model, in which the uncertain state ω is a random variable
with distribution m. If we assume the generating mean-field
distribution, m, is known, it becomes a standard stochastic
optimal control paradigm. If m is not known and the only
known is a set of distributions lie in some neighborhood
of m: m′ ∈ Bρ(m), the resulting best response to mean-
field formulation is the so-called distributionally robust best
response:

inf
aj∈Aj

sup
m′∈Bρ(m)

Eω′∼m′ lj(aj , a−j , ω
′) (2)

We choose the uncertain set as probability distributions within
a Wasserstein ball of radius ρ from m.

Bρ(m) = {m′ | W (m,m′) ≤ ρ} (3)

C. Problem formulation

In distributionally robust games, each agent j adjusts aj ∈
Aj to optimize the worst-case payoff functional Em′ lj(aj , ω

′).
Throughout the paper we assume that the function lj(·, ω′)
is proper and upper semi-continuous for m′−almost all



ω′ ∈ Ω, and either the domain Aj is nonempty compact or
Em′ lj(aj , ω

′) is coercive.

Definition 1 (Robust Game). The robust game G(m) is given
by

• The set of agents: J = {1, 2, . . .}
• The action profile of player j: Aj , j ∈ J
• The uncertainty set of probability distributions: Bρ(m)
• The objective function of player j: Em′∈Bρ(m)lj(a, ω

′),
where m′ is an alternative probability distribution of m
within some bounded distance.

Then the robust stochastic optimization of agent j given the
uncertain set and the action of other players is

(Pj) : infaj∈Aj supm′∈Bρ(m) Em′ lj(a, ω
′) (4)

We introduce a distributionally robust equilibrium concept
for the game G(m).

Definition 2 (Distributionally Robust Equilibrium). Denote
by a∗j the optimal configuration of player j and by a∗−j :=
(a∗k)k 6=j the action profile of the other players than j. A
strategy profile a∗ = (a∗1, . . . , a

∗
n) satisfying

sup
m′∈Bρ(m)

Em′ lj(a
∗, ω′) ≤ sup

m′∈Bρ(m)

Em′ lj(aj , a
∗
−j , ω

′)

for every aj ∈ Aj and every player j, is a distributionally
robust pure Nash equilibrium of the game G(m).

In other words, reaching the robust Nash equilibrium means
all players achieve the minimum loss in their worst-case
scenario. As in classical game theory, sufficient condition
for existence of robust equilibrium can be obtained from
the standard fixed-point theory: if Aj are nonempty compact
convex sets and lj are continuous functions such that for any
fixed a−j , the function aj 7→ lj(a, ω

′) is quasi-convex for
each j, then there exists at least one distributionally robust
pure Nash equilibrium. This result can be easily extended to
the coupled-action constraint case for generalized robust Nash
equilibria.

Next we formulate the generative learning problem into the
DRG framework. As depicted in Figure 1, there are two groups
of players in this game. The attackers train the generative
model Gθa(z) to produce fake samples x̃i that are similar to
the real ones, where z is a low dimension random variable feed
to the generator and θa is the model parameter. The defenders
explore the neighborhood of m and slightly change the real
data to produce hard samples x′i which have the maximum
distance from the model distribution. The attackers again refine
the model to fit for those hard samples. The loss function is
defined by the discrepancy D(m̃,m′), where m′ is the hard
sample distribution chosen by the defender. Since the real
distribution m is unknown and we only have an observation
dataset {x1, · · · , xN} ⊂ Rd, the optimization is performed by
iteratively updating the generative model as well as the hard
sample distribution m′, which is an approximation of m within
some bounded uncertain set Bρ(m).

Fig. 1: Distributionally robust game (DRG) framework for
generative learning

As displayed in the right column of Figure 1, initially, the
fake samples are drawn from an arbitrary distribution, e.g.,
m̃0 is a uniform. In each iteration, the attackers refine it
closer to the hard sample distribution m′, while the defenders
keep looking for the worst-case approximation m′ within
the uncertain set Bρ(m). Once the algorithm converges, i.e.
D(m̃,m′) ≤ ε, we can ensure that the discrepancy is bounded
by a small value if D(·, ·) satisfies triangle inequality:

D(m̃,m) ≤ D(m̃,m′) +D(m′,m) ≤ ε+ ρ (5)

If m′ is exactly the worst distribution in Bρ(m), we can say
that D(m̃,m) ≤ |ρ−ε| (see Figure 2). Therefore, the learning
task is completed and the fake samples drawn from m̃ will be
indistinguishable from the real ones.

Next section will discuss the properties of Wasserstein
distance as a metric for D(·, ·) and compare it with the popular
used KL divergence.

Fig. 2: Wasserstein metric as a true distance



III. WASSERSTEIN METRIC

There are various ways to define the divergence between
two distributions. The most straightforward way is to sum up
the point-wise loss on those two sets, such as Lp distances
used in ridge regression (L2-norm) and Lasso (L1-norm),
KL divergence and its symmetric alternative Jensen-Shannon
(JS) divergence. These loss functions are decomposable and
widely adopted in both discriminative and generative tasks.
Since the evaluation can be conducted on individual parts, they
provide convenience for incremental learning and it’s easier to
develop efficient algorithms. However, they do not take into
account the interactions of the individual points within a set.
Non-decomposable losses such as F-measure, total variation
and Wasserstein distance capture the entire structure of data
and provide better topologies for optimization, at the cost of
additional computational burden in loss evaluation.

A. Definition

a) Optimal Transport: The optimal transport cost mea-
sures the least energy required to move all the mass in the
initial distribution f0 to match the target distribution f1.

C(f0, f1) = inf
π∈Π(f0,f1)

∫
X×Y

c(x, y)dπ(x, y) (6)

where c(x, y) is the ground cost for moving one unit of mass
from x to y, and Π(f0, f1) denotes the set of all measures on
X × Y with marginal distributions f0, f1, i.e., the collection
of all possible transport plans [12].

Wasserstein distance is a specific kind of optimal transport
cost in which c(x, y) is a distance function. The pth Wasser-
stein distance (p ≥ 1) is defined on a completely separable
metric space (X , d):

Wp(f0, f1) := ( inf
π∈Π(f0,f1)

∫
X×X

d(x, y)pdπ(x, y))
1
p (7)

Specifically, when p = 1, W1 is called the Kantorovich-
Rubinstein distance or Earth-Mover (EM) distance. It has
duality as a supremum over all 1-Lipschitz functions ψ:

W1(f0, f1) = sup
‖ψ‖Lip≤1

Ef0 [ψ(x)]− Ef1 [ψ(x)] (8)

B. From KL divergence to Wasserstein Metric

Although KL divergence and its generalized version f-
divergence are very popular in generative learning literatures,
using Wasserstein metric D(m̃,m) = Wp(m̃,m) has at least
three advantages. First, Wasserstein metric is a true distance:
the properties of positivity, symmetry and triangular inequality
are fulfilled. Thanks to triangular inequality (Figure 2), the
maximum discrepancy D(m̃,m) is bounded by ρ+ε when the
optimizer approaches the distributionally robust equilibrium.

Second, the Wasserstein space has a finer topology where
the loss changes smoothly with respect to the model pa-
rameters, thus effective gradients are always available dur-
ing optimization. The information based divergence like KL
doesn’t recognize the spatial relationship between random
variables. DKL(m, m̃) =

∫
m(x) log(m(x)

m̃(x) )dx is invariant

to reversible transformations on x = (x1, x2, · · · )T because
m(x)dx removes the dimensional information. This property
is illustrated in Figure 3. Therefore defining the uncertain set in
Wasserstein space is more reasonable than using KL. It ensures
the hard samples drawn from the Wasserstein neighborhood
Bρ(m) will not deviate too far from the real ones.

Third, f-divergence Df (m, m̃) =
∫

Ω
f(dmdm̃ )dm̃ requires the

model distribution m̃ to be positive everywhere, which is not
possible in many cases. But adding a widespread noise term to
enforce this constraint will lead to unwanted blur in generated
samples [21]. The Wasserstein metric does not impose such
constraint, thus can produce sharp images.

Fig. 3: An example to show Wasserstein metric can recognize
permutation changes, while KL divergence outputs the same
value.

Thanks to these properties, optimizing with Wasserstein loss
can continuously improve the model, while the discontinuity
behavior of KL divergence will deteriorate the gradients and
make the training process unstable.

IV. LEARNING ALGORITHM FOR DISTRIBUTIONALLY
ROBUST GAMES

In this section we provide learning procedure to solve the
distributionally robust Nash equilibria, and develop practical
implementation algorithms to train deep generative models.

A. Learning the Distributional Robust Equilibrium

In DRG, the attacker and defender work against each other
to find the robust Nash equilibrium by solving a minimax
optimization problem in (4)

(Pj) : infaj∈Aj supm′∈Bρ(m) Em′ lj(a, ω
′)

Since Bρ(m) is a subset of Lebesgue space (the set of inte-
grable measurable functions under m), the original problem
(Pj) has infinite dimensions, which does not facilitate the
computation of robust optimal strategies. It has been proved
in [22] that (Pj) can be reduced to a finite dimensional
stochastic optimization problem when ω′ 7→ lj(a, ω

′) is upper
semi-continuous and (Ω, d) is a Polish space. We introduce a
Lagrangian function for constraint (3),

l̃j(a, λ,m,m
′) =

∫ ′
ω

lj(a, ω
′)dm′ + λ(ρ−W (m,m′)) (9)

the original problem (Pj) becomes

(P̃j) : infaj∈Aj ,λ≥0 supm′∈Bρ(m) l̃j(a, λ,m,m
′) (10)



In robust game G(m), the defenders search for the worst hard
sample distribution m′ in the Wasserstein neighborhood of m
to maximize its loss against the model m̃. According to the
definition of Wasserstein metric with ground distance d(·, ·),

sup
m′

l̃j = λρ+ sup
m′

∫
ω′

[lj(a, ω
′)] dm′ − λW (m,m′)

= λρ+

∫
ω

sup
ω′

[lj(a, ω
′)− λd(ω, ω′)] dm

(11)

Define the integrand cost as

hj(a, λ, ω) = λρ+ sup
ω′

[lj(a, ω
′)− λd(ω, ω′)], (12)

then (P̃j) becomes a finite dimension problem on Aj×R+×Ω
if Aj and Ω have finite dimensions

(P̃ ∗j ) inf
aj∈Aj ,λ≥0

Emhj(a, λ, ω) (13)

Since m is an unknown distribution observed by the noisy
unsupervised dataset x1, . . . , xN , it is challenging to compute
the expected payoff Em′ lj(a, ω

′), Emhj(a, λ, ω) and their
partial derivatives. We need a stochastic learning algorithm
to estimate the empirical gradients for the Wasserstein metric.

For a single player, the stochastic state ωj leads to error

εj = ∇a,λhj(a, λ, ωj)−∇a,λEmhj(a, λ, ω)

The variance of εj is high and not vanishing. To handle this,
we introduce a swarm of players ωj ∼ m, j ∈ J , then the
error term becomes

ε =
1

|J |
∑
j

∇a,λhj(a, λ, ωj)−∇a,λEmhj(a, λ, ω)

It has zero mean and standard deviation as√
E[ε2] =

1

|J |

√
var[∇a,λhj(a, λ, ·)]

For realized ω ← {x1, . . . , xN}, the expected payoff for N
players is 1

N

∑N
j=1 hj(a, λ, ωj), and the optimal strategy is

(a∗, λ∗) ∈ arg min
a,λ

N∑
j=1

hj(a, λ, ωj)

This provides an accurate robust equilibrium payoff when N
is very large.

B. Toy Example

To illustrate the stochastic learning algorithm we consider
specific robust games with finite number of players. Each
player acts as if he is facing a group of opponents whose
randomized control actions are limited to a Wasserstein ball,
and tries to optimize the worst case payoff. The random
variable ω is distributed over m and we assume it has finite p
moments. We choose |J | = 2, p = 2, d(ω, ω′) = ‖ω − ω′‖22
and a convex payoff function lj(a, ω′) defined on R2 × R2

lj(a, ω
′) = ‖ω′ − a‖22 = (ω′1 − a1)2 + (ω′2 − a2)2 (14)

The optimal defender state ω′∗ is computed through the
Moreau-Yosida regularization, and the attacker’s action pushes
it closer to the destination ω as shown in Figure 4.

sup
m′

l̃j = λρ+

∫
ω∈Ω

φj(a, λ, ω)dm

φj(a, λ, ω) = sup
ω′∈R2

[lj(a, ω
′)− λd(ω, ω′)]

= sup
ω′∈R2

(‖ω′ − a‖22 − λ‖ω′ − ω‖22)

(15)

ω′∗ = ω +
ω − a
λ− 1

, (λ > 1) (16)

Fig. 4: Action pushes the particle toward ω (which is un-
known) given ω′∗

Then d(ω, ω′∗) = ‖ω−aλ−1 ‖
2
2, leads to the worst-case loss

lj(a, ω
′∗) = ‖ω′∗ − a‖22 =

λ2

(λ− 1)2
‖ω − a‖22 (17)

The Moreau-Yosida regularization on m′ realized at ω′∗ is

φj(a, λ, ω) = lj(a, ω
′∗)− λd(ω, ω′∗)

=
λ

λ− 1
‖ω − a‖22

(18)

The integrand cost function hj = λρ2 + λ
λ−1‖ω − a‖

2
2. Thus,

problem (P̃ ∗j ) becomes

inf
a,λ

Emhj = inf
a,λ

∫
ω

λρ2 +
λ

λ− 1
‖ω − a‖22 dm, (λ > 1)

(19)
Given N observations, the stochastic robust loss is

l∗N =
1

N

N∑
j=1

hj(a, λ, ωj)

= λρ2 +
λ

N(λ− 1)

N∑
j=1

‖ωj − a‖22

We set ρ = 1 and m is a dirac distribution where ωj ≡ 1.
Figure 5 plots the trajectories of strategies during learning.

C. Train a Deep Generative Model

Image generative models such as VAE [5], GAN [6],
WGAN [9] have shown great success in recent years. VAE
trains a encoder network and a decoder network by minimizing
the reconstruction loss, i.e., the negative log-likelihood with a
regularizer. It tends to produce blurring images due to the
additional noise terms in their model. GAN trains a generator
network and a discriminator network by solving a minimax
problem based on the KL-divergence. The model is unstable



Fig. 5: The optimal strategies converges to (a∗1, a
∗
2) = (1,−1)

(Figure 7) due to the discontinuity of the information-based
loss functions, and the generator is vulnerable to saturation as
the discriminator getting better. [23], [8] gives some empirical
solutions to these problems, e.g., keeping balance in training
generator and discriminator networks, designing a customized
network structure. WGAN [9] defines a GAN model by
an efficient approximation (equation 8) of the Earth Mover
distance. During training, it simply crops all weights of the
discriminator network to maintain the Lipschitz constraint.

In our framework, generative learning is formulated as a
distributionally robust game with two competitive groups of
players, whose actions are defined on the parameter space
θ = (θa, θd) ∈ Θ. In stochastic settings, ω, ω′ and ω̃
are instantiated to sample vectors {x1, x2, . . .}, {x′1, x′2, . . .}
and {x̃1, x̃2, . . .}. The attacker produces indistinguishable ar-
tificial samples x̃i = Gθa(z) to minimize the discrepancy
infθD(m̃,m′), where x̃i ∼ m̃. Meanwhile, the defender pro-
duce adversarial samples x′i = Gθd(xi), which are substitutes
of the real ones, to maximize the loss supm′∈Bρ(m)D(m̃,m′),
xi ∼ m, where x′i ∼ m′.

With Moreau-Yosida regularization, the defenders work on
the following maximization problem to generate the optimal
adversarial samples in Wasserstein ball Bρ(m),

θ∗d ∈ arg max
θd

l(θa, ω
′)− λd(ω, ω′)

and the attackers work on the minimization problem to find
the best generative parameters θ∗a

θ∗a ∈ arg min
θa,λ

λρ+ l(x̃, x′∗)− λd(x, x′∗)

Given enough observations {x1, x2, . . .} from the unknown
real distribution m, a similar distribution m̃ can be learned
by solving the distributionally robust Nash equilibrium. New
samples generated from x̃i ∼ m̃ should be indistinguishable
from the real ones. The DRG algorithm is summarized in
Algorithm 1.

Algorithm 1 DRG with Wasserstein metric

Input: real data (xi)
N
i=1, batch size n, initial attacker

parameters θa0, Lagrangian multiplier λ0, initial defender
parameters θd0, number of defender updates per attacker
loop nd, Wasserstein ball radius ρ, learning rate η, low-
dimension random noise z ∼ ζ
Output: θa, θd, λ
while θa has not converged do

for t = 1, 2, . . . , nd do
Sample (xi)

n
i=1 ∼ m from real dataset

Sample (x̃i)
n
i=1 ∼ m̃ from generator Gθa(z)

yi ← Eθd(xi), ỹi ← Eθd(x̃i)
Modify to adversarial samples y′i ← Gθd(yi)
gd ← ∇θd l(ỹn1 , y′

n
1 )− λd(yn1 , y

′n
1 )

θd ← θd + ηRMSProp(gd)
end for
Sample (xi)

n
i=1 ∼ m from real dataset

Sample (x̃i)
n
i=1 ∼ m̃ from generator Gθa(z)

yi ← Eθd(xi), ỹi ← Eθd(x̃i)
Modify to adversarial samples y′i ← Gθd(yi)
ga,λ ← ∇θa,λ λρ+ l(ỹn1 , y

′n
1 )− λd(yn1 , y

′n
1 )

θa ← θa − ηRMSProp(ga,λ)
λ← λ− ηRMSProp(ga,λ)

end while

V. EXPERIMENTS

A. Dataset

We apply our DRG algorithm on the CelebA [24] dataset
to generate artificial human faces. The training set has 202K
cropped face images with size 64 × 64, therefore each real
sample xi ∼ m has 12288 dimensions. The artificial samples
are generated from low-dimensional noise vectors z ∼ ζ,
where ζ is a random normal distribution.

B. Network Structure

In this paper, the generative network x = Gθa(z) follows
the DCGAN [25] architecture. We design y′ = Gθd(y) as a
single layer neural network to perform modification. For the
encoding network y = Eθd(x), we use one CNN-ReLU layer
followed by 3 CNN-BatchNorm layers and a fully connected
layer to produce code vectors. Both networks have about 5
million training parameters.

C. Loss Functions

In DRG algorithm, the Wasserstein distance l(x̃n, x′
n
) is

implemented by Sinkhorn-Knopp’s algorithm [26], and the
ground cost d(xn, x′

n
) = 1

n

∑n
i=1 ‖xi − x′i‖22. Instead of di-

rectly computing the L2-norm on raw data vectors, Algorithm
1 uses an encoder network y = Eθd(x) to learn useful features.

D. Hyperparameters

The encoder maps the original data into a 100-dimension
feature space, which matches the dimension of the random
noise z. In all experiments, the cost based on Wasserstein
metric is normalized to [0, 1], where the supremum indicates



the cost between images that are all black and all white. The
hyperparameters listed in Algorithm 1 are chosen by validation
and listed in table I; others are set as the default values in their
references. For training we choose the RMSProp optimizer
[27] because it doesn’t involve a momentum term. Empirically,
we found momentum-related optimizers may deteriorate the
training. The reason is, in robust games the payoff function is
dynamic and changes every time the other players take actions.
Since the structure of the objective surface is not stationary, it’s
meaningless to follow the velocity of the previous optimization
steps.

TABLE I: Hyper parameters

parameters n ρ λ0 nd η θa0, θd0, η
values 64 0.1 10 1 0.00005 random normal

E. Evaluation

Experimental results are demonstrated in Figure 6, in which
the last line shows the most similar samples in the real
dataset. The training curve for DRG is plotted in Figure 8.
It means the Wasserstein loss is highly related to the sample
quality. By optimizing the worst-case loss function, the DRG
model converges very quickly to the real data distribution
and successfully produce sharp and meaningful images. In
experiments we found that the original GAN generator [25]
suffers from unpredictable quality deterioration at iteration
5.3K, 7.8K, 10.2K (Figure 7), etc, while our algorithm keeps
improving the sample quality. This problem is caused by the
discontinuity of the KL-divergence.

Fig. 6: DRG results on CelebA, attacker iteration = 300K

Fig. 7: Stability of the generated models. Upper: DCGAN,
image quality suddenly becomes worse. Bottom: DRG

Fig. 8: Training curve for DRG algorithm with Wasserstein
metric. The loss goes down as generated samples getting
better, and converges to the Wasserstein distance between
two real data sets. The curves are smoothed for visualization
purpose.

The evaluation of generative models is itself a research
topic. [28] figured out that different evaluation metrics favor
different models. For example, a high log-likelihood doesn’t
mean good visual quality, and vice versa. Therefore, the metric
used in training and evaluation should fit for the specific
application. In our case, the learned fake data distribution
should be as close as to the real one. So we measure the
discrepancy between these distributions using Wasserstein
metric. We compare our algorithm with DCGAN [25] and
WGAN [9], and report the quantitative results in Table II.

The computation complexity per attacker iteration is linear
O(n) with respect to the batch size. We use a Titan Xp to
train the model and plot the computation time in Figure 9.
When n = 64, it takes 0.2 seconds for an attacker update.
Our algorithm has smaller constant factor than WGAN.

VI. CONCLUSION

We proposed a new game theory model with Wasserstein
loss to train generative models. In this game, two competing
groups of players work on a minimax problem to optimize the
discrepancy between model and data. The defenders change
slightly the data to produce a set of hard examples that has



TABLE II: Performance evaluation

W (m, m̃) (×10−5) 1K samples 10K samples
real - real 12.9 1.74
real - DRG 22.6 15.9
real - DCGAN 37.3 16.4
real - WGAN 31.0 17.2

Fig. 9: Computation time with respect to batch size.

the maximum distance from the model distribution, while the
attackers take action to push the model toward the unknown
real by fitting for the hard set. Instead of prevalent information-
based loss functions such as KL-divergence, we use Wasser-
stein distance to measure the similarity between distributions.
Its advantages have been analyzed from both theoretical and
empirical perspectives. We offered a practical realization on
neural networks and applied our model in deep generative
learning. The algorithm was tested on large-scale human face
dataset, and it can produce artificial samples with good visual
quality and high diversity. The learning process is stable and
converges fast. Experiment evaluation shows our algorithm
achieving better performance than DCGAN and WGAN in
terms of the statistical distance between the real and fake
sample distributions.

To our knowledge, this is the first work connecting distri-
butionally robust game with deep generative learning. In the
future, we plan to extend this framework to learn sequential
data, such as speech synthesis and video generation. Another
direction is to study the properties of Wasserstein space and
develop more efficient algorithms for robust optimization.
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