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Abstract—Accurate wind power prediction (WPP) is important
for stable operation of power systems. However, the intermittent
nature and high variability of wind causes many challenges.
This paper proposes a three-layer WPP model considering the
data from historical power measurements and numerical weather
prediction (NWP) systems. The first layer uses a linear model
to learn the wind power generation equation. The second layer
includes several non-linear models to learn the seasonality and the
inertia of wind turbines. The third layer uses stacked regression
to learn a hybrid combination of predictors in the previous layer.
We compared the proposed approach against the state-of-the-art
algorithm as well as two neural network models. Experiment
results show that our approach has the best performance.

Index Terms—wind power, time series, hybrid model, long-
term forecasting, renewable energy.

I. INTRODUCTION

Under the pressure of global warming and environment
pollution, renewable energy systems have a rapid growth in
the past decades. The increasing integration of wind and solar
power generation leads to potential impacts on planning and
operations of power systems. Utilities need to maintain the
balance of demand and supply to ensure the stability of electric
power operation. However, the intermittent nature and high
variability of wind power generation causes many challenges
to power system operators. A robust and accurate wind power
prediction (WPP) system is very essential for economic and
stable operation of the electricity markets.

According to several studies in this area [1], [2], WPP
approaches can be classified based on the forecasting horizon
into three categories [3]:

o Short-term forecasting (minutes to 8 hours-ahead)

o Mid-term forecasting (8 hours to day-ahead)

« Long-term forecasting (multiple-days-ahead)

A long-term wind power forecasting system gives utilities time
to maintain system frequency and operating reserve, which
benefits bidding in multiple-days-ahead electricity markets.

Wind power forecasting can be classified into physical
approaches, statistical approaches, and hybrid approaches [4],
[5], [6]. Physical approaches take into account the physical
characteristic of the wind power generation process and estab-
lish a mathematical model from wind force to electric energy
production, where accurate wind strength measurement is
required. These approaches are effective in short-term forecast-
ing and useful in dealing with operation problems. Statistical
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approaches learn the underlying non-linear relation between
numerical weather prediction (NWP) wind forecasting and
wind power generation through statistical methods. In general,
NWP forecasts have major impact on the WPP performance.

Pierre Huyn et al. [7] developed a machine learning model
based on support vector machines (SVMs) to forecast day-
ahead wind power generation in 15-minute intervals. Shu
Fan et al. [8] designed a model using Bayesian clustering
and SVM to learn the NWP wind speed forecasting patterns.
Bhaskar Kanna and Sri Niwas Singh [9] proposed an adaptive
wavelet neural network (AWNN) to learn the mapping from
NWP’s wind speed and wind direction forecasts to wind power
forecasts. Yao Liu et al. [10] provided a short-term wind
forecasting model based on discrete wavelet transform and
long short-term memory networks (DWT_LSTM). However,
due to the large time scale in long-term forecasting and the
noisy outputs of weather forecasting systems, short-term meth-
ods cannot be directly used. The industry has not established
effective approaches for long-term forecasting [11].

This work addresses the problem of long-term wind power
prediction. We proposed a three-layer WPP model consider-
ing the data from historical power measurements and NWP
systems. The first layer learns the physical relation between
wind force and wind power generation by modeling the wind
generation process of wind turbines. It maps NWP’s wind
speed and wind direction forecasts to a basic wind power
estimation based on a linear model. The second layer consists
of several non-linear models that learn the seasonality and the
inertia of wind turbines. The third layer is a stacked regression
model that forms linear combinations of the predictors from
the previous layer. The proposed approach is tested on a
public dataset, in which the task is to predict 48-hour ahead
hourly wind power generation at 7 wind farms. The prediction
accuracy is evaluated by Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE). We compared the proposed
approach against the state-of-the-art algorithm as well as
several neural network models. Experiment results show our
approach has the best performance.

This paper is organized as follows: Section II introduces
the problem and a brief description of the dataset. Section
IIT provides detailed explanation of the proposed algorithms.
Section IV shows the performance evaluation and comparison.
Section V concludes the paper.



II. PROBLEM DESCRIPTION
A. The Problem

We study the problem of WPP. The task is to predict 48-
hour ahead hourly wind power generation at 7 wind farms.
Available information in the training data contains historical
power measurements of these wind farms and meteorological
forecasts of wind components from the NWP systems at each
farm. The actual wind power generation was measured and
recorded hourly and denoted by wplt]. The NWP meteorologi-
cal forecasts are formulated as vectors containing the predicted
wind speed and wind direction (wsy,wdy), k = 1,..., K,
where K is the total number of forecasting records. The NWP
forecasts were issued twice a day at time ¢; with forecasting
horizon of 48 hours ahead.

wsy = {ws[t] |t =t, + 1,..., tx + 48}

1
wdi = {wd[t] | t = tg +1,..., t), + 48} M

Similarly, the wind power generation is predicted in hourly
resolution. The WPP model will learn the mapping from
the current NWP wind forecasts and the actual wind power
measurement in the past. It can be described by

wplt] = f(ws[t], wd[t],wp[t —i],0) i=1,2,... (2)

where O denotes the model parameters learnt from the existing
observations. When new NWP forecasts come, the model
forecasts the wind power generation at the corresponding hour.
A major challenge of this problems comes from the unpre-
dictable nature and variability of wind conditions, especially
the difference between meteorological wind forecasts and the
actual wind condition at specific wind farm locations and
altitudes due to microclimate. Another issue is the time-series
nature of the data that inherits the long-term dependencies and
seasonal effects of wind. Traditional time-series models like
Autoregressive Integrated Moving Average (ARIMA) cannot
formulate such non-linear relationships and incorporate all
these effects. We address those issues by training a hybrid
model and extract features from the following three aspects:

1) Meteorological wind forecasts from NWP

2) Environmental influence of season and farm location

3) Historical data of past wind power measurement

For long-term wind power prediction (> 24 hours), features
from aspect 1) and 2) show more contribution to the prediction
performance. The prediction is made by solving a supervised
learning problem, and no specific time-series model was used.
Therefore, we need to design handcraft features for historical
data to capture the time-series property in data streams.

B. The Data

The data is collected from Global Energy Forecasting
Competition 2012 - Wind Forecasting [12]. It consists of
NWP wind speed & direction forecasts and actual wind power
measurement. All power values have hourly resolution and
were normalized between 0 and 1. This enables a scale-free
comparison of the forecasting results on various wind farms.
The NWP forecast outputs are available twice daily at 00UTC
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Fig. 1: NWP Forecast Patterns

and 12UTC and has forecast horizon of 48 hours ahead. Thus,
for each datetime, there are 4 NWP forecasts with different
forecast horizons. Figure 1 shows the NWP forecast pattern.

There are two parts of available data (yyyy-mm-dd-hh):

o Series for the period 2009-07-01-00 to 2010-12-30-12

o Series for the period 2010-12-30-13 to 2012-06-28-12

In the first part, both actual power and wind forecasting are
available at all datetimes. In the second part, a set of 48-
hour periods with missing power observations are left for
prediction. Each part can be split into 156 “84 — hour blocks”.

III. PROPOSED METHOD

We propose a three-layer hybrid model to predict the wind
power generation, in which each layer takes the output of
previous layer as input data, and produce its own predictions.
Figure 2 describes the entire system.

A. First Layer Prediction

Accurate NWP wind forecasting is decisive to train a good
WPP system [13]. The first layer model uses NWP data to
learn the wind power generation equation of wind turbines.

Wind power is generated from the impact between wind and
the blades of wind turbines. The rotating blades slow down the
wind and convert it to mechanical energy that drives rotor to
generate electricity. The speed-power curve can be split into
three regions (Figure 3) according to the convergence rate Cy:

1) Constant C), region, power linearly increases with wind

2) Constant power region, power reaches a controlled limit
3) Region of power shutdown, wind exceeds the upper limit
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Fig. 2: The Three Layer Wind Power Prediction Framework
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Fig. 3: Three Regions of Turbine speed Control [14]

The electric energy comes from the kinetic energy of wind,
which is a function of the wind speed (ws) and air mass (m).
The kinetic energy of wind is

1
KE:§*m*w52 3)

and momentum in the wind is m * ws, thus
power per unit area = KFE xmomentum m2xws® 4

It indicates the power extracted from wind is proportional to
cube of wind speed. Taking into account the impact of wind
direction (wd), we use the formula wp ~ wd * (ws + ws? 4+
wsS) to learn this relation, where * indicates the interaction
operation in linear regression. The relation between NWP wind
forecasts and wind power generation is learnt by a linear
model, whose output will be used in the next layer models.

B. Second Layer Predictions

Besides the meteorological forecasts from NWP, there are
many other kinds of information essential for wind power
prediction. The second layer takes the first layer predictions as
a new feature wind and extracts features from other domains.
The information captured by these features include seasonal
pattern, historical observation, environmental influence, etc.
We develop multiple non-linear statistical models to learn
those kinds of information and combine them into a hybrid
model to obtain better predictive performance.

1) Seasonal Pattern: Wind has a variation according to
the season of the year. The underlying reason is that the
season may affect the temperature, wind speed, and humidity,
which have impact on the wind speed. Since the wind power
generation equation is based on wind speed, wind direction,
and air density, seasonal features like month, day, and hour can
express these factors in a non-explicit way. Here we extract
four kinds seasonal features: year, month, day, hour.

2) Time-Series Property: Most machine learning models
assume observations to have independent and identically dis-
tributed (i.i.d.) distribution. However, the temporal dependence
of time-series data violates this assumption. For each times-
tamp, we integrate the wind feature with its previous and next
m-hours observations as a vector (p1, -« , Dm, M1, »Man) L.
It learns the inertial behavior of wind turbines by capturing
the temporal dependence in time-series observations.

3) Historical Observation: The main purpose of time-series
modeling is to forecast the future by studying the past observa-
tions. Statistical models use previous wind power observations
to generate prediction over the next few hours. The predic-
tion performance falls significantly as the forecasting horizon
increases. Statistical models like auto regressive integrated
moving average (ARIMA) and neural network models like
long short-term memory (LSTM) are only good at small hori-
zons. The partial auto-correlation of wind power observation
is small at larger horizons. For each 48-hours missing period,
we extract the actual wind power observation before and
after it: hl = wplty], h2 = wplty — 1], wphl = wplty],
wphd9 = wp[t, + 49]. These values are the nearest available
observations to the missing block and are shared by all 48
predictions in set k.

4) Recursive Forecast: Recursive forecast is another way
to use historical data. Ordinary machine learning approaches
train independent models for each horizon and perform fore-
casting in parallel. Recursive forecasting models are trained
sequentially so that the predictors at adjacent horizons can
help each other. Suppose we want to forecast y using its past
observation and feature x, the recursive model would be:

Yi+1 = 0 + Q1Y + Q2Ziq1 + €41 ®)
One step ahead forecast is
Ut+1 = Qo + A1yt + Qory (6)
Two steps ahead forecast is
Ut+2 = Qo + Q1041 + Qoliio (7

The forecasting models are trained recursively at each horizon
by including the previous output as the historical feature.

5) Environmental Influence: The location of wind farms
have influence on wind power generation. Farms that locate
close to each other may have similar patterns. We extract
unsupervised features to discover the environment influences.
Training data shows strong correlation between farm 4, 6,
and 7, and weak correlations between other farms. First,
we extract unsupervised features posl2, start, cluster_all,
cluster_farm as in [15] to learn the weak correlations. Then,
we add a post-processing procedure to smooth the output
of the predictions. Denote (y4,ys,y7) as the raw prediction
vector at farm 4, 6, 7, then the vector after smoothing is the
weighted average (vs,vs,y7) * (a1, az,a3)’. The smoothing
coefficient matrix (a1, as, ag) is learnt by linear regression on
the validation set. Another smoothing operation is conducted
on the time sequence. We use moving average of a 3-hour
window size to smooth the predictions. Experiments show the
smoothing trick can always reduce the prediction error.

6) Summary: We have designed nine models in the second
layer with different features and different type of training
data. Some models are trained separately at 7 farms and/or 48
horizons, others are trained on all farms and/or all forecasting
horizons. All models are trained by gradient boosting regres-
sion [16]. The summery of model variants and the feature used
in layer two are listed in Table I, Table II and Table III.



TABLE 1. Prediction Models in the Second Layer

TABLE III. The Layer 2 Models and Associated Features

feature / data 7 farms, all hours | 7 farms, 48 hours | all farms, 48 hours | all farms, all hours Model Features
forecast only 70 N/A - — -
Forecast + history 7 12 711, 715 N/A f0 ws, wind, season, lag of wind, dist
environment mjly _ N/A fe. f7 N/A N/A f1 ws, wind, season, lag of wind, dist, h1, h2
forecast + history + recursive A NA 13 NA f6 wind, season, posl2, start, cluster_farm, cluster_all
f7 wind, season, posl2, start, cluster_all
TABLE II. Features Created in the Proposed Algorithm f10 ws, wind, season, lag of wind, dist, farm, wd_c12
Fill ws, wind, season, lag of wind, dist, farm, wd_c12, wphl, set
Feature Description Type Range f12 ws, wind, season, lag of wind, dist, farm, h1, h2, set
wind layer one prediction float [0,1] f13 ws, wind, season, lag of wind, dist, farm, h1, h2, set, rl
D1y Pmy M, N lag of wind float 10,1] FI5 | ws, wind, season, lag of wind, dist, farm, wd_c12, wph1, wph49, set
month month int [1,12]
year year int [2009,2012]
hour hour in a day int [0,23] LT
oy date difference to July 15 - [0.195] models. Table ;V shows the' averaged prediction has less error
dist forecasting horizon int [1.48] than the best single model in layer 2.
set batch number float [1,313] . .
T, 72, wph, wphi9 Tistorical Teature Tloat 0.1] 3) Stacked Regression: Suppose we have a set of predictors
£os12 sl DRz | categorial {071{7()"1‘2};11} fi(x), -, fx(x), instead of selecting a single one from the
star start hour of forecasi categorica , . . L.
cluster jarm cluster in one farm int (6] set, a more accurate predictor can be obtained by combining
clusterall _ cluster in all farms i [1,24] them. We restrict attention to linear combinations
wd_c8 categorical wind direction | categorical | {0,1,---,8}
wd_c12 categorical wind direction | categorical | {0,1,---,11} K
ws2, ws3 wind speed square & cube float [0,17]
rl recursive feature float [0,1] f(I) = E O[kfk (I) (9)
k=1

C. Third Layer Prediction

Since no individual forecasting approach can capture all the
information, we use hybrid method to combine the knowledge
learnt by single models. This layer takes the prediction outputs
from the previous layer to learn a hybrid ensemble model.
We introduce three varieties of hybrid model to learn the
ensemble: choose best, simple average, and stacked regression.

1) Choose Best: Model with different types of feature
shows different performance at each forecasting horizon. For
example in Figure 4, model f0 has lower prediction error
in the middle while model f1 performs much better in the
first and last few hours. The reason is, f1 includes historical
features before and after the missing hours. This type of
feature is benefit to the adjacent hours, but may deteriorate the
prediction at larger distance. The ensemble model is obtained
by combining experts at different forecasting horizons. Based
on the prediction performance on validation set, a hybrid
model f01 is formed by choosing f1 at horizons close to
the available data and fO at other forecasting horizons.

2) Simple Average: The mean-squared-error (MSE) of an
predictor 6 with respect to the real value 6 is defined as

MSE(6) = Ey(0 — 0)%] = Vary(8) + Biasy(8,0)* (8

The first hybrid approach is aimed at reducing the bias by
choosing the best model at different horizons. The variance
can be simply reduced by averaging the predictions of multiple
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Fig. 4: Error of predictor f0, f1 over horizons

In the simple average approach, oy = % is a constant. Given
samples {(n,yn),n = 1,---, N}, we learn the coefficient
. . . K 2 .

o to minimize Y, (yn — Y_p_; arfi(x))?. Since the
single model predictions are highly correlated, we use ridge

regression with regularization term ), ai =s.

IV. EXPERIMENT RESULT

The dataset comes from a Kaggle competition!, in which
hundreds of teams have submitted their prediction results. The
performance of the proposed approach is compared with the
winner’s approach [15] as well as two neural network models
Node Decoupled Extended Kalman Filter trained Recurrent
Neural Network (NDEKF_RNN) [17] and AWNN [9]. The
performance of the prediction models is evaluated by RMSE
and MAE. Note that all power values were normalized to 0-1
range, which enables scale-free comparison on multiple farms.

In this work, we proposed a three-layer hybrid model
for wind power prediction. Experiment results on the same
public dataset show that our model has the best performance
compared with several existing approaches (Table IV). It also
shows the prediction error for single models in each layer and
for the hybrid model. RMSE of the proposed hybrid model is
0.14508, which outperforms the state-of-the-art approach and
the neural network models. The performance of persistence
model and random guess are also listed for reference.

In this task, the WPP model predicts 48-hour ahead hourly
wind power generation at 7 wind farms. Figure 5 plots the
prediction error over 48 forecasting horizons, in which f7
and f12 are the worst and the best model in the second
layer. Including historical observations significantly improves
the performance at horizons close to the available data, that
is, the first and last few hours.

Model performance varies over forecasting horizons. A
comparison over horizon period [13,36] with AWNN [9] and
NDEKF_RNN [17] is displayed in Table V. Note that the

Thttps://www.kaggle.com/c/GEF2012-wind-forecasting



TABLE IV. Prediction Error in RMSE for Comparison.

[ model [ note [ RMSE |
Linear Regression layer 1 0.17390
f0 layer 2 0.15435
f1 layer 2 0.14997
f6 layer 2 0.15704
f7 layer 2 0.15777
f10 layer 2 0.15297
fl11 layer 2 0.15390
f12 layer 2 0.14914
f13 layer 2 0.14949
f15 layer 2 0.15045
f01 layer 3 0.14873
simple average layer 3 0.14695
Proposed layer 3 0.14508
Leustagos [15] winner’s approach 0.14567
DuckTile [12] local linear regression 0.14719
Duehee Lee [12] neural network & Gaussian process | 0.15501
AWNN [9] wavelet neural network 0.15014
NDEKF_RNN [17] recurrent neural network 0.15347
PERSIST persistence model 0.35366
Random random guess 0.46070

horizon period [13,36] is where the neural network models
have the largest improvement over the persistence baseline.
Figure 6 shows actual and predicted wind power on farm 2.

TABLE V. Prediction error over horizon period [13, 36]

[ model [ note [ RMSE | MAE |
Proposed layer 3 0.1496 | 0.1055
AWNN [9] wavelet neural network 0.1531 | 0.1172

NDEKF_RNN [17] | recurrent neural network | 0.1690 | 0.1280
PERSIST persistence model 0.3710 | 0.2725

V. CONCLUSION

This paper proposed a three-layer hybrid model for wind
power prediction. The useful information comes from two
aspects: the NWP wind forecast and the historical wind power
measurement. We developed multiple models targeting at
different aspects of knowledge. The hybrid model integrates
the physical and statistical models specialized for short and
long forecasting horizons. Experiment results on a public
competition dataset show that the proposed prediction model
has the best performance compared with the state-of-the-art
approach as well as several neural network models. Future
work is to incorporate discrete wavelet transform with LSTM
network for short-term forecasting. Another direction is to
develop power prediction models for solar energy and produce
probabilistic predictions.
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Fig. 5: Prediction error over forecasting horizons
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