
Distributed Mean-Field-Type Filter
for Vehicle Tracking

Jian Gao and Hamidou Tembine

Abstract— Particle filter is an effective tool for vehicle track-
ing. However, we need to maintain a large number of particles to
keep a reasonable tracking accuracy for multi-target tracking in
large scale state space. This paper proposes a new distributed
mean-field-type filter to handle those noisy, partial-observed
and high-dimensional data. The state space is decomposed and
the particles are deployed locally and updated independently in
the simplified subspaces. The filtering framework contains four
operations: sampling, prediction, decomposition and correction.
A mean-field term is included in the system dynamic so that
the prediction is based on the previous state as well as its
statistic distribution, which is estimated by a multi-frame
learning procedure. The experiment on real data shows that
our approach can achieve accurate tracking results with a small
number of particles.

I. INTRODUCTION

Vehicle tracking is a fundamental problem in Intelligent
Traffic Systems (ITS). With the development of sensor
technology, the observation data can be easily collected from
many sources, such as inductive loops, video cameras and
radars [1]. However, those data are often noisy and partially
observed, which could make fatal conflicts and deteriorate
the quality of ITS. Therefore, new learning, filtering and data
assimilation techniques are required to process the noisy data
collected from large scale traffic networks.

Vision-based vehicle tracking is a challenging problem
because the quality of the video data is generally very
poor [2]. The observation data is often contaminated by the
noise from background interference, low resolution, lighting
change, motion blur, and occlusion. Early work on filtering
and signal estimation assumes Gaussian noise and linear sys-
tems. Kalman filter [3] uses a linear time-invariant dynamic
model to estimate the optimal state, which can yield the
exact conditional probability estimate with that assumption.
The extensions EKF, UKF, EnKF and particle filters were
designed to deal with nonlinear models and non Gaussian
noise.

A dynamical system is said to be of mean-field type if
it involves the probability measure of the state variable in
the transition kernel to the next state [4]. The combination
of observed data and dynamical models of mean-field type
become a challenging problem since the system is huge
and the observations are partial and noisy [5]–[8]. In [9]
the authors observe that the approximation of most particle-
based filters such as mean-field ensemble Kalman filter,
approximate particle filter, particle swarm optimization based

This research is supported by U.S. Air Force Office of Scientific Research.
The authors are with Learning & Game Theory Laboratory, New York

University Abu Dhabi, E-mail: tembine@nyu.edu

filter are not satisfactory for signal-observation dynamics
of mean-field type. The main problems are the effective
integration of high dimensional data and the control of error
accumulation.

As an application, we implement our algorithm on video-
based vehicle tracking, which is a popular task in ITS.
Most previous work was focused on the detection side rather
than the tracking side [2]. Despite well-designed appearance
models [10], they use very simple motion model, or just
randomly search around the previous vehicle positions [11].
However, fine-scale textures and well-designed features are
not available in low quality videos. Our motivation is to
design a robust filtering framework to estimate the vehicle
positions accurately with noisy video data.

The contribution of this paper can be summarized as
follows: (i) We propose a distributed mean-field-type filter
(DMF) for vehicle tracking. The state space is decomposed
into independent subspaces based on the foreground detec-
tion result. Particles are initialized as some good hypothe-
ses and updated independently in each subspace. (ii) We
provide a generic methodology to estimate the filtering dis-
tribution in four steps: sampling, prediction, decomposition
and correction. This methodology can be applied to other
high-dimensional networked systems with mean-field-type
dynamic models and noisy observations. (iii) The mean-field
term of system state is combined in the dynamic model
to provide robust and accurate state prediction. A multi-
frame learning procedure is designed to estimate the prior
state distribution. The experimental results on real data have
verified the usefulness and effectiveness of our approach.

The remainder of this paper is organized as follows:
Section II introduces the system model and presents our
distributed mean-field-type filter. Section III describes the
design and implementation of our algorithm for vehicle
tracking. Experimental results are also illustrated. Finally,
we provide some concluding remarks in Section IV.

II. SYSTEM MODEL

A dynamical system that involves the probability measure
of the state variable in the transition kernel to the next state is
called a mean-field-type system. We consider a process (zt)t
describing a high-dimensional dynamics of mean-field type
with transition probability K := P(zt+1 ∈ Z|zt,Lzt), while
the process (yt)t denotes the observation with conditional
probability law P(yt ∈ Y |zt,Lzt). Here Lzt denotes the
probability law of the state zt. Our goal is to estimate the
law of zt based on the observation history y1, . . . , yt. We
introduce a nonlinear mean-field filter mt(Z) = P(zt ∈

2017 American Control Conference
Sheraton Seattle Hotel
May 24–26, 2017, Seattle, USA

978-1-5090-5992-8/$31.00 ©2017 AACC 4454



Z|y1, . . . , yt) to solve this problem. Once the conditional
filtering distribution mt is computed, we get a complete
representation of the uncertainty. However, the implemen-
tation of mt is not a trivial task, especially when the
system is non-linear and the noise is non-Gaussian. It often
requires some approximation by an empirical process m̂N

t .
In high dimensional state space, we want to design a filtering
approximation m̂N

t such that the bound of error εN
√
N is

independent of the cardinality of the entire network.

A. Sparse Decomposition of the State Space

The state space of the entire network is defined as a huge
graph G = (V, E), V 6= ∅. The set of vertices V is non-empty
and arbitrary finite. The connections between the vertices
are designed in a sparse manner ‖E‖ � ‖V‖2. For each
signal-observation (zt, yt), there is a projection on the nodes
(zvt, yvt)v∈V . When the cardinality of V and E are very large,
the system is considered as a high-dimension network, for
example, the traffic network of the entire city. The set of
nodes V can be decomposed into o components:

V := V1 ⊕ V2 ⊕ . . .⊕ Vo (1)

where Vj ∩ Vj′ = ∅ if j 6= j′. The signal space over the
network is

∏
v∈V Zv , and the observation space is decom-

posed as
∏
v∈V Yv . Let N (v) be the neighborhood set of

node v in the network, that is, N (v) contains all the vertices
adjacent to v in G. The transition at node v is sparse in the
sense that only the neighborhood signal (zwt)w∈N (v) and its
distribution matter.

B. Distributed Mean-Field Filter Algorithm

At node v, the transition probability P(zv,t+1 ∈
Zv|zt,Lzt) is the key term and determined by the neigh-
borhood (augmented) state (zwt)w∈N (v) and its distribution
Lzwt

. The observation at node v evolves according to the
marginal conditional probability P(yvt ∈ Yv|zvt,Lzvt

) =
lvt(zvt,Lzvt

; yvt). The algorithm is as follows:
Initialization: T,N , m̂N

0 = m0. Here N is the number of
particles and m0 is the initial state distribution.
For time step t from 1 to T :
Sampling SN : Sample i.i.d ẑit from m̂N

t . This is done
by sampling independently from a product distribution
(m̂N

t,|V1 , . . . , m̂
N
t,|Vo) The operator SN is therefore:

SNm =
1

N

∑
i

δẑit ; (2)

Prediction P : Predict the next state at node v for the ith

particle: ziv,t+1 ∼ Kvt(ẑit; ·)Lzvt

Decomposition D: Project a probability measure mt,|V on
the class of measures mt,|Vj , (j = 1, . . . , o), that are almost
non-overlapping across zones, where

V := V1 ⊕ V2 ⊕ . . .⊕ Vo

and mt,|Vj is the marginal of mt restricted to the zone Vj ,
i.e., to the sub-space

∏
s∈Vj Zs, here s is the measurements

or sensors in zone Vj . For example, camera (s1), radar (s2)

and inductive loop (s3) form a detection system with three
sources in zone Vj . Thus, the decomposition operator yields:

Dmt = (mt,|V1 , . . . ,mt,|Vo) (3)

Correction Ct+1: Compute the weight of the ith particle
w.r.t. the sensor s in zone Vj :

wit+1|Vj =

∏
s∈Vj lt+1(z

i
s,t+1,Lzis,t+1

; ys,t+1)∑
i′
∏
s∈Vj lt+1(zi

′
s,t+1,Lzi′s,t+1

; ys,t+1)

The estimated filtering distribution is set as the weighted sum
of the particle states in each zone Vj :

m̂N
t+1,|Vj =

N∑
i=1

wit+1|Vj ∗ δziVj ,t+1
(4)

where ziVj ,t+1 := (zis,t+1)s∈Vj .
The algorithm is distributed so that only observations

(sensors) from the current zone Vj are used to update the
filtering distribution m̂N

t+1,|Vj .
As shown in Figure 1, the distributed mean-field filter

(DMF) is therefore given by:

m̂N
t+1 = Ct+1DPS

Nm̂N
t =: ÔNt+1m̂

N
t . (5)

Fig. 1: Operators of the distributed mean-field filter algorithm

Theorem 1: The global error of the approximate mean-
field filter is bounded by [12]:

sup
‖φ‖≤1

E‖φ(ÔNt+1m̂
N
t )− φ(Ot+1mt)‖ ≤ εN (6)

where the supremum is taken over test functions φ, and εN is
independent of the time step t. Moreover, there is a constant
κ > 0 such that supN εN

√
N < κo < +∞.

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section we give the implementation of DMF in a
real vehicle tracking scenario. The experiment results demon-
strate the improvements in both accuracy and efficiency
compared with the standard particle filters [13]. Figure 2
shows a map of the surveillance region. It is a subarea of
the entire traffic network in Maryland, which covers about
30,000 square miles and contains 411 video cameras. For
simplicity, we conducted the experiment on 12 cameras in
this local area. The highway traffic sequences captured by
these 12 video cameras are put together and generate a video
with resolution 1920*1080. It contains 1376 frames at 15
frames per second. Our goal is to track multiple vehicles
simultaneously in the surveillance regions and count the
vehicle number on the road.

In this tracking problem, we implement DMF in a particle
filter framework. Each particle is described by a vector with
six coordinates zt = (pxt, pyt, sxt, syt, vxt, vyt)

T , which

4455



Fig. 2: Map of the surveillance region

are the vehicle’s position, size, and velocity at frame t.
The state variables z1, . . . , zt are estimated consecutively
based on the observation sequence y1, . . . , yt generated by
the sensors deployed in the surveillance region. For a traffic
surveillance system in a city, thousands of gigabytes of data
could be generated per second, which makes the analysis or
even data transmission and storage quite challenging. What’s
more, the data is noisy and partially observed due to the low
video quality and sparse distributed traffic cameras. We don’t
know what happens in the visual blind area between two
adjacent cameras. What we can do is estimate and predict the
state parameters based on the limited data nearby and make
a reasonable guess concerning traffic conditions. Therefore,
it is a good choice to decompose the network into relatively
small and independent parts, and process the large amount
of data in a distributed way.

There are two levels of decomposition. Figure 3 shows
the high level decomposition. Suppose the entire space of
the traffic network is V , then we decompose it into o zones
V1, . . . ,Vo, e.g. o different roads, and in each zone there
are k measurements s1, . . . , sk, such as radars, cameras and
loops. The observation of sensor s is ys,t+1. Measurements
of different sensors can be fused using particle filter [14].
On the low level, we decompose the state space based on
the prior distribution. For example, in Figure 4b, the image
domain can be decomposed into three lanes. We deploy the
particles with high probability in the lanes and with low
probability in the tree or sky areas, so as to reduce false
alarms. Since vehicles in the same lane have interactions
with each other and vehicles in different lanes are relatively
independent, the particles are updated and resampled inde-
pendently in each zone.

The state z could be position and velocity of one vehicle,
the queuing length at intersections, or the traffic density
within a local area, which depends on the specific appli-
cations. However, the initial state is unknown in most cases,
which is quite different from many object tracking scenarios
where the first-frame bounding box is given. There are two
ways to handle this. The first is to make a random guess
about the initial state, and put the particles uniformly in

Fig. 3: High level decomposition. Decompose the entire
network into o independent zones, each with k different
sensors.

(a) (b)

Fig. 4: Tracking result. (a) Last frame (b) Prior distribution.
Bright pixel indicates a high probability of vehicle existence.

the state space. As the new observation sequence comes,
the particles will evolve to be more and more accurate
hypotheses. The other way is to start from some good initial
hypotheses, which are obtained by a foreground detection
mechanism. Our experiment has shown that starting from
the vehicle detection hypotheses is much better than starting
from a uniform distribution.

A. Foreground Detection

The domain of foreground detection is quite large [15]
[16] [17] [18]. According to the previous research, a good
foreground detection algorithm should have three properties.
First, it should contain multiple complementary features,
such as image intensity, color, gradient and texture. Second,
the background model should be adaptive to the recent
observed history, i.e. the foreground. Third, to identify the
missing foreground-color pixels on targets, the spacial-time
consistency should be exploited.

To generate the background model, we use the temporal
median filter. We use the median value of each pixel in a
constant time interval as the background. In our experiment,
the background image is updated once every 25 frames by
calculating the temporal median in the recent 250 frames.
The background model is robust to mild illumination changes
and the noise caused by the swaying trees. Then, we extract
two complementary features from the video sequence: gray-
scale intensity and gradient variation. Chromaticity variation
[19] is not used because it is not distinctive in our case.
For each point, the extracted feature values are compared
with the background model. The different values indicate
the probability that the pixel belongs to foreground. Finally,

4456



to remove the false alarms caused by noise and identify the
missing parts on a real target, we assign the pixel labels
using loopy belief propagation (LBP) [20] under a Markov
Random Field (MRF) optimization framework [21]. The idea
is to exploit the spatial consistency and receive messages
from neighboring pixels: for the current pixel i ∈ I , its
probability of being foreground will increase if its four
adjacent neighbors j ∈ N (i) are foreground pixels, and
decrease if the neighbors are background. Let l be the label:
0 for background and 1 for foreground. The energy function
of a label assignment is:

C(l) =
∑
i∈I

φi(li) +
∑
i∈I

∑
j∈N (i)

ψij(li, lj) (7)

The data term φi(li) measures the cost of assigned label
li to point i, which is given by the probability that i is
assigned to a wrong label. The smoothness term ψij(li, lj)
measures the spacial inconsistency of the two labels li and
lj . If the neighboring pixels i and j have different labels,
ψij(li, lj) = 1, otherwise it is 0. In each iteration, messages
are propagated around the MRF. We choose the order of
up, down, left, right for the message passing. By iteratively
minimizing the cost function, we can get the optimized label
assignment. The foreground detection result is shown in
Figure 5.

(a) (b)

(c) (d)

Fig. 5: Foreground Detection Result. (a) The original image.
(b) Probability of being foreground before BP. (c) Probability
of being foreground after BP. (d) Foreground labeling result.

B. Mean-Field Term

Since the foreground regions have a high probability of
vehicle existence, it is reasonable to use the foreground
detection result to initialize the tracking procedure. For
the T detected foreground blobs, we decompose the image
space into T independent zones and deploy N particles in
each zone for the multi-target tracking task. Compared with
uniformly scattering the particles in the whole state space,

it is more effective to start from these good hypotheses. As
new observations come in the next frame, particle weights
are updated independently in each zone. A resampling step
is triggered to discard the particles with too small weights,
i.e. those deployed far away from the real targets, and
thus put more particles near the target area. The particle
state zt = (pxt, pyt, sxt, syt, vxt, vyt)

T is evolved by the
transition kernel Kt(zt,Lzt ; zt+1). The system dynamics is:

pxt+1 = pxt + vxt + npx

pyt+1 = pyt + vyt + npy

sxt+1 = sxt ∗ (Esx(pxt+1, pyt+1)/Esx(pxt, pyt) + nsx)

syt+1 = syt ∗ (Esy(pxt+1, pyt+1)/Esy(pxt, pyt) + nsy)

vxt+1 = αvxt + (1− α)Evx(pxt+1, pyt+1) + nvx

vyt+1 = αvyt + (1− α)Evy(pxt+1, pyt+1) + nvy
(8)

where n = (npx, npy, nsx, nsy, nvx, nvy)
T is the random

Gaussian noise vector with variance σ2
i , i = 1, . . . , 6. Esx,

Esy , Evx, Evy are the mean-field terms which represent
the expected vehicle size (sx, sy) and velocity (vx, vy) at a
specific position (px, py) in the image.

There are two reasons to use the mean-field terms. First,
the existing approaches update the system state based on the
previous state, which may amplify the error if the system
model is inaccurate. For example, the vehicles may speed
up when driving downhill and the drivers may slow down
when it begins to rain, which makes our constant velocity
assumption invalid. Therefore, we should design a dynamic
system model to fit the current road and weather conditions
with a certain distribution of the uncertainty. However, due
to the complexity and variability of external factors, it is
improper to just add some parameters and make a higher-
order system. Instead, we designed a learning procedure and
use the previous experience to guide our current task. This
is what most drivers do: if the vehicle ahead slows down, he
will also slow down. Second, there’s a small part of the image
that contains vehicles, i.e. the road zone, and most false
alarms come from waving trees and moving clouds in the sky.
Moreover, the vehicle’s speed varies with the lanes (fast lanes
and slow lanes), and the traffic flow is dense and slow near
an intersection. So the distribution of vehicle position and
speed should reflect these intuitions and be spatially distinct.
In light of this, it is reasonable to learn these distributions in
a data driven way and embed the mean-field terms into the
system model.

The state distribution P((zt′)0≤t′≤t ∈
∏
t′≤t Zt′) is es-

timated by a multi-frame learning procedure, which can
be performed online or offline. In the offline version, we
collect K previous frames as training data. In each frame,
the vehicles are annotated with bounding boxes. By compare
the positions in two adjacent frames, we can calculate the
velocity. Thus, we have the vehicles’ positions, velocities
and sizes in all frames. Then we make a 2D histogram to
estimate the spatially distinct prior distribution of the state
variables (pxt, pyt, sxt, syt, vxt, vyt). The vehicle position
prior distribution is shown in Figure 4b, and the velocity

4457



and size distributions are shown in Figure 6.

(a) sx (b) sy

(c) vx (d) vy

(e) vx distribution (f) vy distribution

Fig. 6: Mean-field term of velocity and vehicle size. (a)(b)
Velocity displayed by pixel intensity. White is positive and
black is negative. (c)(d) Vehicle size displayed by pixel
intensity. Brightness means larger size, and black area means
no vehicle detected.

In Figure 6e and 6f we can see that the speed at position
2,4 is smaller than position 1,3, and vx at position 3,4 is
positive and vx at position 1,2 is negative, which is consistent
with the main road directions. Thus, we get the transition
kernel Kt(zt,Lzt ; zt+1) for the system model in equation
(8), where Lzt = Poz−1t . The mean-field terms Esx, Esy ,
Evx, Evy can be calculated by taking the expected value
of the estimated prior distribution. In the online version, we
maintain a dynamic mean-field term with the state variables
in previous frames:

zt+1 = (1− ζ)E[zt] + ζzt (9)

where the learning rate ζ is set to 0.001.

C. Tracking

The tracking procedure starts from the detection result,
and the state space is split into independent zones based on
the blobs shown in Figure 5d. For each zone, we put N=10
particles, and the initial state parameters (px0, py0, sx0, sy0)
are set as the blob’s enveloping rectangle. Since the vehicle’s
velocity is unknown at the beginning, we set vx0, vy0 as

the mean-field value Evx(px0, py0), Evy(px0, py0). Then we
add Gaussian noise to shift the particles and let them evolve
based on the system dynamic in equation 8. The observation
likelihood lt(z

i
s,t,Lzis,t ; ys,t) indicates the confidence of a

particle hypothesis, which is measured by the similarity
with a given target model. For each particle, we extract
the pixel intensity vector from a rectangular tile defined by
(pxt, pyt, sxt, syt). The similarity between two tiles p, q is
computed by the normalized cross correlation (NCC):

s(p, q) = 0.5 ∗ (NCC(p, q) + 1) (10)

Aside from the appearance similarity, the confidence of a
particle hypothesis also depends on the bias to the expected
particle state:

d2(zit, E[zit]) = (zit − E[zit])
2 (11)

Therefore, the particle weight before normalization is calcu-
lated by:

wit = s(p, q)exp(−d2(zit, E[zit])) (12)

In each frame, the output vehicle locations are obtained from
the particles with the highest weight, and the corresponding
rectangular tiles are stored as the target appearance model to
be used later when it is compared to the other tiles of the
particles in the next frame.

For multi-vehicle tracking, we create new tracks for each
unassigned zone and store its appearance model. If it is re-
detected in the next frame, i.e. the best particle’s confidence
exceeds some threshold, we increase its age by 1. The track
will be accepted when age ≥ 3. On the other hand, if a track
has not been detected for too many consecutive frames, it will
be deleted, and the particles deployed in that zone will be
removed. The deletion happens when the vehicle goes out of
view or to eliminate the noisy detections.

The performance is evaluated by the successful tracking
rate. We define the overlap rate of two bounding boxes as
the ratio between the intersection and union area. For each
vehicle, the tracking in frame t is successful if the overlap
rate between the output hypothesis and the ground truth is
above 0.5. We compare our approach with particle filter [22]
modified by [13]. The particle number is set to be N =
1000, while in our algorithm we assign N = 10 particles
in each zone. The processing speed is around 0.6 frame per
second, with MATLAB implementation on a PC with 3.50-
GHz Intel Core E5-1650 CPU. Most computational load is in
foreground detection. Our algorithm can be easily accelerated
by parallel computing. Figure 7 shows the performance
comparison in terms of the successful tracked vehicle number
in all 1376 test frames. Experimental results demonstrate
the advantage of our approach. More tracking results are
displayed in Figure 8.

IV. CONCLUSION

This paper proposed a new distributed mean-field type fil-
tering framework for vehicle tracking on highways. The filter
has four components: sampling, prediction, decomposition
and correction. By decomposition of the entire state space,

4458



(a) PF (b) DMF

(c) Error of PF (d) Error of DMF

Fig. 7: Performance comparison.

Fig. 8: Tracking result in 12 views.

the distributed filters perform locally and focus on their sim-
plified subspace. Based on the foreground detection result,
particles are initially deployed near some good hypotheses,
which is better than random guessing. A multi-frame learning
procedure is added before the tracking task to estimate the
prior state distribution. A mean-field term is combined in the
system dynamic so that the state prediction depends on not
only the previous state but also the statistics of the process.
The mean-field filter performs well with small ensembles in
the vehicle tracking task.

REFERENCES

[1] J. Zhang, F. Y. Wang, K. Wang, W. H. Lin, X. Xu, and C. Chen,
“Data-driven intelligent transportation systems: A survey,” IEEE ITS
Transactions, vol. 12, no. 4, pp. 1624–1639, Dec 2011.

[2] N. Buch, S. A. Velastin, and J. Orwell, “A review of computer vision
techniques for the analysis of urban traffic,” IEEE ITS Transactions,
vol. 12, no. 3, pp. 920–939, Sept 2011.

[3] G. Welch and G. Bishop, “An introduction to the kalman filter,” Chapel
Hill, NC, USA, Tech. Rep., 1995.

[4] H. Tembine, R. Tempone, and P. Vilanova, “Mean-field learning: a
survey,” CoRR, vol. abs/1210.4657, 2012.

[5] T. Yang, P. G. Mehta, and S. P. Meyn, “A mean field control-oriented
approach to particle filtering,” In Proceedings of American Control
Conference (ACC), pp. 2037–2043, 2011.

[6] B. Djehiche and H. Tembine, Risk-Sensitive Mean-Field-Type Control
Under Partial Observation. Springer International Publishing, 2016,
pp. 243–263.

[7] A. Bensoussan, B. Djehiche, H. Tembine, and P. Yam, “Risk-sensitive
mean-field-type control,” 2017.

[8] H. Tembine, “Distributed strategic learning for wireless engineers.”
[9] J. Gao and H. Tembine, “A mean-field filter for two-step ahead

forward-looking problems,” July 2016.
[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,

“Object detection with discriminatively trained part-based models,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 9, pp. 1627–1645, Sept 2010.

[11] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 7, pp. 1409–1422, July 2012.

[12] J. Gao and H. Tembine, “Distributed mean-field-type filters for big data
assimilation,” in 2nd IEEE International Conference on Data Science
and Systems, Sydney, Australia, 2016, pp. 1446–1453.

[13] G. Shabat, Y. Shmueli, A. Bermanis, and A. Averbuch, “Accelerating
particle filter using randomized multiscale and fast multipole type
methods,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 37, no. 7, pp. 1396–1407, July 2015.

[14] R. Hostettler and P. M. Djuri, “Vehicle tracking based on fusion of
magnetometer and accelerometer sensor measurements with particle
filtering,” IEEE Transactions on Vehicular Technology, vol. 64, no. 11,
pp. 4917–4928, Nov 2015.

[15] T. Bouwmans, “Traditional and recent approaches in background
modeling for foreground detection: An overview,” Computer Science
Review, vol. 1112, pp. 31 – 66, 2014.

[16] A. Sobral and A. Vacavant, “A comprehensive review of background
subtraction algorithms evaluated with synthetic and real videos,”
Computer Vision and Image Understanding, vol. 122, pp. 4 – 21,
2014.

[17] S. Brutzer, B. Hferlin, and G. Heidemann, “Evaluation of background
subtraction techniques for video surveillance,” in Computer Vision and
Pattern Recognition (CVPR), June 2011, pp. 1937–1944.

[18] K. Wang, Y. Liu, C. Gou, and F. Y. Wang, “A multi-view learning
approach to foreground detection for traffic surveillance applications,”
IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 4144–
4158, June 2016.

[19] T. Horprasert, D. Harwood, and L. S. Davis, “A statistical approach
for real-time robust background subtraction and shadow detection,”
1999, pp. 1–19.

[20] A. T. Ihler, J. W. Fischer III, and A. S. Willsky, “Loopy belief
propagation: Convergence and effects of message errors,” J. Mach.
Learn. Res., vol. 6, pp. 905–936, Dec. 2005.

[21] S. Z. Li, Markov Random Field Modeling in Image Analysis, 3rd ed.
Springer Publishing Company, Incorporated, 2009.

[22] C. Hue, J. P. L. Cadre, and P. Perez, “Tracking multiple objects with
particle filtering,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 38, no. 3, pp. 791–812, Jul 2002.

4459


